Role of Molecular Charge in Nucleocytoplasmic Transport

نویسندگان

  • Alexander Goryaynov
  • Weidong Yang
چکیده

Transport of genetic materials and proteins between the nucleus and cytoplasm of eukaryotic cells is mediated by nuclear pore complexes (NPCs). A selective barrier formed by phenylalanine-glycine (FG) nucleoporins (Nups) with net positive charges in the NPC allows for passive diffusion of signal-independent small molecules and transport-receptor facilitated translocation of signal-dependent cargo molecules. Recently, negative surface charge was postulated to be another essential criterion for selective passage through the NPC. However, the charge-driven mechanism in determining the transport kinetics and spatial transport route for either passive diffusion or facilitated translocation remains obscure. Here we employed high-speed single-molecule fluorescence microscopy with an unprecedented spatiotemporal resolution of 9 nm and 400 µs to uncover these mechanistic fundamentals for nuclear transport of charged substrates through native NPCs. We found that electrostatic interaction between negative surface charges on transiting molecules and the positively charged FG Nups, although enhancing their probability of binding to the NPC, never plays a dominant role in determining their nuclear transport mode or spatial transport route. A 3D reconstruction of transport routes revealed that small signal-dependent endogenous cargo protein constructs with high positive surface charges that are destined to the nucleus, rather than repelled from the NPC as suggested in previous models, passively diffused through an axial central channel of the NPC in the absence of transport receptors. Finally, we postulated a comprehensive map of interactions between transiting molecules and FG Nups during nucleocytoplasmic transport by combining the effects of molecular size, signal and surface charge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein nucleocytoplasmic transport and its light regulation in plants.

Light exerts a great influence on gene expression, physiology and development pattern in higher plants. Protein factors involved in these processes, such as the photoreceptor, phytochrome B, a key regulatory protein, COP1, and some bZIP transcription factors have been identified and their light-regulated movement between the cytoplasm and the nucleus has been demonstrated. These findings imply ...

متن کامل

P-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel

Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...

متن کامل

Using Drosophila to study regulation of neural stem cell quiescence by nucleocytoplasmic transport

Cellular quiescence is a reversible non-dividing state. Subsets of adult mammalian stem cells, namely neural stem cells, spend the majority of their time in quiescence. The ability of stem cells to adopt the quiescent state appears to be crucial for long-term maintenance of the stem cell compartment. Tumour cells can also become quiescent and this renders them resistance to most chemotherapeuti...

متن کامل

Studying the effects of pH and molecular charge on the passive and iontophoretic permeation of L-phenylalanine through cellulose acetate membrane

  Iontophoresis is one of the skin permeation enhancement methods involving the transport of drugs through the skin under the effect of electrical current. The effect of molecular charge on the iontophoretic permeation of drugs has not been completely understood yet. Therefore the effect of passive and iontophoretic permeation of L-phenylalanine at pH 3.6 (positive charge) and pH 8 (negative ch...

متن کامل

Nucleocytoplasmic Shuttling of p62/SQSTM1 and Its Role in Recruitment of Nuclear Polyubiquitinated Proteins to PML Bodies*

Nuclear Polyubiquitinated Proteins to PML Bodies* Serhiy Pankiv, Trond Lamark, Jack-Ansgar Bruun, Aud Øvervatn, Geir Bjørkøy and Terje Johansen From the Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, and Department of Biosciences, University College of SørTrøndelag, Norway Running head: Nucleocytoplasmic shuttling of p62/SQSTM1 Address correspo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014